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Abstract: We study a novel phenomena of smearing of black hole horizons from the

effect of space noncommutativity. We present an explicit example in AdS3 space, using

the Chern-Simons formulation of gravity. This produces a smeared BTZ black hole which

goes beyond the classical spacetime unexpectedly and there is no reality problem in our

approach with the gauge group U(1, 1) × U(1, 1). The horizons are smeared, due to a

splitting of the Killing horizon and the apparent horizon, and there is a metric signature

change to Euclidean in the smeared region. The inner boundary of the smeared region acts

as a trapped surface for timelike particles but the outer as a classical barrier for ingoing

particles. The lightlike signals can escape from or reach the smeared region in a finite

time, which indicates that the black hole is not so dark, even classically. In addition, it

is remarked that the Hawking temperature can not be defined by the regularity in the

Euclidean geometry except in the non-rotating case, and the origin can be smeared by a

new (apparent) horizon.
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1. Introduction

It is known that noncommutative field theories [1, 2] modify the short distance behaviors of

conventional theories. For example, the noncommutativities can smooth out a singularity of

classical solutions in the conventional theories [3]. However, similar modifications in gravity

theories are not studied much, though there are several formulations of noncommutative

gravities and speculations. For example, one can generally expect a “smearing” of the

horizons, which are sharply defined in the conventional spacetime. From the commutation

relations

[xi, xj ] = iθij, (1.1)

where θij is an antisymmetric constant of dimension length2, the precise location of a

horizon is limited by the uncertainty relations ∆xi∆xj ≥ |θij|/2. But, there has been

no explicit demonstration of existence of the smearing region with unexpected space-time

structure.

In this paper, we investigate the modifications of the BTZ black hole in three-

dimensional anti-de Sitter (AdS3) space with a polar form of the commutation relation

[r, φ] = iθ̂ (1.2)

for a spherically symmetric case (θrφ ≡ θ̂),1 using the Chern-Simons formulation of gravity.

This is the first explicit example of the novel phenomena of the horizon smearing which

goes beyond the classical spacetime unexpectedly, and without the reality problem by

1This commutation relations differ from the Cartesian ones with a constant θij [4] since it corresponds

to a non-constant θij = rθ̂ǫij in (1.1). But, the Moyal product [1] can be still consistently defined in the

polar coordinate with a constant θrφ. And we expect no big difference in the qualitative physics near the

horizon since we are considering physics at r 6= 0.
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considering the gauge group U(1, 1)×U(1, 1). It is found that the event horizon is smeared

by the splitting of the Killing horizon and the apparent horizon with the thickness of the

order θ̂ and the smeared horizon acts as a classical barrier for particles. The time duration

of light signals escaping from and reaching the smeared horizon region from outside is

demonstrated to be finite. The physical effect of the metric signature change inside the

smeared region is considered. In addition, it is remarked that the Hawking temperature

from the regularity in the Euclidean geometry is not applicable, and the naked conical

singularity at the origin in AdS3 or negative mass solutions, generally, is smeared due to

the presence of a “new” apparent horizon near the origin.

2. Three-dimensional noncommutative gravity from Chern-Simons formu-

lation

It is well known that, in three-dimensional space-time, conventional gravity theory can

be formulated as a Chern-Simons theory [5]. This provides a novel way to define the

noncommutative gravity theory [6]. An explicit solution in the noncommutative gravity

can be obtained from the corresponding known solution in the commutative gravity, via

the Seiberg-Witten map [7].

The (2+1)-dimensional noncommutative gravity with the negative cosmological con-

stant Λ = −1/l2 is defined by the U(1, 1) × U(1, 1) Chern-Simons theory, up to surface

terms,

Ig[Â] =
l

16πG

∫

Tr

(

Â+ ⋆ dÂ+ +
2

3
Â+ ⋆ Â+ ⋆ Â+

)

−
(

Â+ ↔ Â−
)

. (2.1)

(Here, the wedge symbol has been omitted.) The connections are given by2

Â± = (ω̂a ± êa/l) ta + iĉ±1 (2.2)

with the triads and the SU(1, 1) spin connections êa = êa
µdxµ, ω̂a

µ = (1/2)ǫabcω̂µbcdxµ (a =

0, 1, 2), respectively, and the U(1) connections c± which make the group closed with respects

to the Moyal ⋆ product [1, 6]

⋆ = exp

[

i

2
θ̂(
←−
∂r
−→
∂φ −

←−
∂φ
−→
∂r)

]

. (2.3)

Here, it is important to note that, in the commutative limit, the theory does not

depend on the metric, i.e., the choice of the coordinates [8].3 In the polar coordi-

nates µ = (t, r, φ), for example, the (commutative) action takes the form [9]: Ig[A] =

2We take the SU(1, 1) bases t0 = σ2/2, t1 = iσ3/2, t2 = σ1/2 such that [ta, tb] = −ǫc
abtc, T r(tatb) =

(1/2)η̃ab with ǫ012 = 1 and η̃ab = diag(+1,−1, +1).
3The metric dependence in the Cartesian measure of integration, d3x, under the general coordi-

nate transformations, d3x′ = d3x/
√

g, is canceled by that of the Levi-Civita tensor density ǫαβγ =√
g∂µx′α∂νx′β∂ρx′γǫµνρ in the Chern-Simons 3-form d3xǫµνρTr[Aµ∂νAρ + (2/3)AµAνAρ].
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(l/16πG)
∫

dtdrdφ Tr(−A+
r ∂tA

+
φ + A+

φ ∂tA
+
r + 2A+

t F+
rφ) − (A+

µ ↔ A−
µ ). We consider the

Moyal ⋆ deformation of this polar action as follows:

Ig[Â] =
l

16πG

∫

dtdrdφ Tr
(

−Â+
r ⋆ ∂tÂ

+

φ + Â+

φ ⋆ ∂tÂ
+
r + 2Â+

t ⋆ F̂+

rφ

)

−
(

Â+
µ ↔ Â

−
µ

)

.

(2.4)

(We define F̂±
µν = ∂µÂ

±
ν + Â±

µ ⋆ Â±
ν − (µ↔ ν), in a covariant way.) We note that the non-

commutative action has the measure of integration dtdrdφ and so the Moyal product (2.3)

is well defined, as in the usual Cartesian coordinates [7]. There are some differences in the

global properties of the coordinates, due to the range of the coordinates (0,∞) × (0, 2π)

and so there will be some appropriate boundary conditions on the allowed functions (see

footnote 4, for example). However all the standard “local” (i.e., ignoring boundary condi-

tions) formula in Cartesian coordinates, like equations of motion and the Seiberg-Witten

map, will work also here [6].

The equations of motion are given by

dÂ± + Â± ⋆ Â± = 0 (2.5)

which are not easy to solve directly. But using the Seiberg-Witten map [10], which

transforms the noncommutative Chern-Simons action into the commutative one, or vice

versa,4 without additional action [7], any solution A± of the commutative equations

dA± + A±A± = 0 can be mapped into the corresponding Â± of the noncommutative

equations (2.5) [11]:

Â±
µ (θ) = A±

µ + (i/4)θαβ [A±
α , ∂βA

±
µ + F±

βµ]+ +O(θ2). (2.6)

From the obtained solution Â±, one can compute ω̂ and ê which describe the noncommu-

tative gravity.

3. BTZ black hole solution with U(1) fluxes in U(1, 1) × U(1, 1) Chern-

Simons gravity

In the commutative limit, the equations of motion reduce to the two sets of decoupled

equations

dω + ωω − (1/l2)ee = 0, de + ωe + eω = 0, (3.1)

dc± = 0. (3.2)

We generalize these to the case with the non-vanishing U(1) fluxes dc± = f± by adding

an additional term −2
∫

Tr(fA) to the Chern-Simons gravity action. This modifications

do not change the conventional gravity equations (3.1), since these are decoupled from the

U(1)-parts (3.2).

4In this mapping, there are several boundary terms which do not vanish for an arbitrary choice of θij ,

generally. But, these terms vanish for our choice (1.2) and the commutative solutions A± which decrease

rapidly for large r.
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In the noncommutative case, we have the additional noncommutative action

−2
∫

Tr(f̂ ⋆ Â) [12]. One can confirm that this term is invariant under the Seiberg-Witten

map, for the appropriate fluxes f̂ which decrease rapidly for large r with our choice (1.2).

In consequence, the solution Â of the generalized theory can be simply obtained by the

same mapping (2.6) from the corresponding commutative solution A. The U(1) fields are

not decoupled anymore and have non-trivial effects on the commutative gravity solutions.

To proceed, we consider the Aharonov-Bohm type U(1) potentials

c± = Φ±dφ (3.3)

which give the fluxes inside the horizons, f± = 2πΦ±δ2(x)drdφ. For the (commutative)

gravity solution, we consider the BTZ black hole given by [13]

ds2 = −N2dt2 + N−2dr2 + r2(dφ + Nφdt)2 (3.4)

with N2 = (r2 − r2
+)(r2 − r2

−)/l2r2, Nφ = −r+r−/lr2. Here, r+ and r− denote the outer

and inner horizons, respectively. The SU(1, 1) × SU(1, 1) 1-form gauge connections A± =

(ωa ± ea/l)ta are given by [14]

A± =
1

2

(

±i(l/ν)dµ z±(ν ∓ iµ)(dt/l ∓ dφ)

z±(ν ± iµ)(dt/l ∓ dφ) ∓i(l/ν)dµ

)

, (3.5)

where ν2(r) = (r2 − r2
−)/(r2

+ − r2
−), µ2 = ν2 − 1, and z± = (r+ ± r−)/l.

For the noncommutativity relations (1.2) with θ̂ rescaled as θ̂ = lθ and others= 0, the

solutions Â± in the noncommutative gravity (2.4) are obtained, via the Seiberg-Witten

map,

Â±
t = i(lθ/4)Tr(A±

φ ∂rA
±
t )1 + [1 + (lθ/2)c±φ ∂r]A

±
t ,

Â±
r = i(lθ/4)Tr(A±

φ ∂rA
±
r )1 + [1 + (lθ/2){(∂rc

±
φ ) + c±φ ∂r}]A

±
r ,

Â±
φ = [1 + (lθ/2)(∂rc

±
φ )]A±

φ , (3.6)

(note that A±
t,r = A±

t,r,A
±
φ = c±φ + A±

φ ), neglecting the higher order terms of O(θ2). The

metric of the noncommutative gravity is defined5 as dŝ2 = ηab(ê
a
µ ⋆ êb

ν)dxµdxν with ηab =

diag(−1,+1,+1) and given by

dŝ2 = −f2dt2 + N̂−2dr2 + r2(dφ + Nφdt)2 +O(θ2), (3.7)

where

N̂2 =
r2

l2
+ θcφ

r

l
−

(r2
+ + r2

−)

l2
+

r2
+r2

−

l2r2
− θcφ

r2
+r2

−

lr3
, (3.8)

f2 = N̂2 + θcφ
r2
+r2

−

lr3
. (3.9)

5Here, the metric has no “reality problem” since the equality êµ ⋆ êν = êµêν holds in our metric (3.4)

due to the commutation relations (1.2). This is a unique feature of our approach and in sharply contrast to

the previous approaches [15] where the metric becomes complex generally and some truncations are needed

to get a real metric.
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Here, we consider c+
φ = c−φ for simplicity and omit the singular term at the origin

−2πlθN2Φδ2(x) in N̂2 since we are considering physics at r 6= 0. Note that, in this case,

the noncommutative spacetime satisfies the same gravity equations of motion as in the

commutative limit, i.e., dω̂+ ω̂ω̂− (1/l2)êê = 0, dê+ ω̂ê+ êω̂ = 0, with no Moyal products,

from (2.5) and the triviality of bi-products in our solution (3.6), i.e., ω̂ ⋆ω̂ = ω̂ω̂, ω̂ ⋆ê = ω̂ê,

etc. In other words, the (first-order) noncommutative solution (3.6) has the same noncom-

mutative curvature R̂ ≡ dω̂ + ω̂ω̂ = (1/l2)êê and (zero) torsion T̂ ≡ dê + ω̂ê + êω̂ = 0, as

in the conventional BTZ black hole spacetime, outside the point flux [14].6

4. Properties of the smeared black hole

The noncommutative black hole solution has several remarkable properties which go beyond

the classical geometry, unexpectedly.

1. There is a splitting of the apparent horizon and the Killing horizon: The apparent

horizon is defined as a null hypersurface gµν(∂µr)(∂νr) = N̂2 = 0, whereas the Killing

horizon as the surface where the norm of the Killing vector χ = ∂t + ΩH∂φ vanishes,

i.e., χ2 = gtt − (gtφ)2/gφφ = −f2 = 0 with the angular velocity of the horizon

ΩH = −(gtφ/gφφ)|H .

We first note that N̂2 = [x5 + θcφx4 − (x2
+ + x2

−)x3 + (x2
+x2

−)x − θcφx2
+x2

−]/x3 =

0 (x 6= 0, x ≡ r/l) has the outer/inner (apparent) horizons at

r̂± = r± − lθcφ/2. (4.1)

The apparent horizons are equally shifted by the small amount −lθcφ/2. On the

other hand, the outer/inner Killing horizons can be obtained from f2 = [x4 +θcφx3−

(x2
+ + x2

−)x2 + x2
+x2

−]/x2 = 0,

r̃± = r± − (lθcφ/2)(1 − r2
∓/r2

±)−1. (4.2)

This shows that Killing horizons are not equally shifted so that the apparent and

Killing horizons do not coincide each other in general, except in the non-rotating

BTZ (r− = 0).7 It is noted that the solution (4.2) of the Killing horizons are not

valid near the extremal commutative black holes with r+ = r− where the higher order

corrections are needed in contrast to the apparent horizons (4.1).

2. The event horizon becomes “smeared”, due to the splitting of the Killing and apparent

horizons: To see this, let us consider the metric

dŝ2 = −f2dt2 + N̂−2dr2 + r2(dφ̃ + Ñφdt)2, (4.3)

6This may be compared with a BTZ solution in the presence of higher derivative terms, like the gravi-

tational Chern-Simons action term. There the BTZ solution satisfies, trivially, the Einstein’s equations of

motion, with no higher derivative contributions. However, this does not mean a triviality of the solution

since its physical parameters, like the ADM mass and angular momentum are significantly deformed from

the conventional ones [16].
7However, the inner horizons r̂−, r̃− are absent in this case, though not manifest in (4.1) -(4.2).
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such as Ñφ = 0 either at the Killing horizons r̃+ or the apparent horizon r̂+, for an

appropriate choice of the co-rotating frame. Then, the radial null geodesics are given

by

dr/dt = ±

√

f2N̂2, (4.4)

with the upper (lower) sign corresponding to outgoing (ingoing) geodesics.

Near the Killing horizon r̃+, the radial null geodesics for r > r̃+ are given by

dr/dt = ±
√

2κ̃(−θcφ)r2
+r2

−/lr̃3
+

√

r − r̃+, (4.5)

where κ̃ corresponds to the surface gravity in the usual context (f2 ≈ 2κ̃(r − r̃+)):

κ̃ = (1/2)(∂f2/∂r)|r̃+

= (r̃4
+ − r2

+r2
−)/(l2r̃3

+) + θcφ/2l . (4.6)

For the non-negative κ̃, which is always the case when θ is not so large, the outgoing

as well as the ingoing geodesics are “classically” allowed only if the velocity (4.5) is

real, i.e., θcφ < 0, or r+ < r̂+ < r̃+.

Even though the light cones close up as we approach the horizon r̃+, which signals

usually that the time coordinate t is badly defined near the horizon, it is remarkable

that the light signals can escape from and reach the horizon r̃+ in a finite time

t̃ ≈ [κ̃(−θcφ)r2
+r2

−/2lr̃3
+]−1/2

√

r − r̃+. (4.7)

This is in contrast to the conventional commutative case,8 where one needs an infinite

time t ∼ ln(r − r+) to escape from the horizon r+ though a finite “proper” time to

reach the horizon [18]. It seems that the singular behavior of the time coordinate t

near the horizon is “moderated” by the noncommutativity effect. Thus, the horizon

is smeared and not so “dark”, even classically !

The same is true when θcφ > 0, or r̃+ < r̂+ < r+. In this case, the radial null

geodesics for r > r̂+ near the apparent horizon r̂+ is given by

dr/dt = ±
√

2κ̂(θcφ)r2
+r2

−/lr̂3
+

√

r − r̂+, (4.8)

where N̂2 ≈ 2κ̂(r − r̂+) and f2 ≈ (2κ̂ − 3θcφr2
+r2

−/lr̂4
+)(r − r̂+) + θcφr2

+r2
−/lr̂3

+ are

used with

κ̂ = (1/2)(∂N̂2/∂r)|r̂+

= (r̂4
+ − r2

+r2
−)/(l2r̂3

+) + θcφ/2l + 3θcφr2
+r2

−/(2lr̂4
+). (4.9)

The geodesics show that the escaping time from (or approaching time to) the horizon

r̂+ is finite

t̂ ≈ [κ̂(θcφ)r2
+r2

−/2lr̂3
+]−1/2

√

r − r̂+ . (4.10)

8Note that this behavior can not be directly obtained by setting θcφ = 0 in (4.7) since we must consider

(r − r+)-term again which now dominates θcφ-term, in that case.

– 6 –
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3. The smeared horizon region behaves as a barrier for particles and waves: This comes

from the fact that f2N̂2 < 0 in the region between r̃+ and r̂+ and one has the imagi-

nary radial velocities for the (radial) null geodesics (4.4).9 This is the consequence of

the fact that there is a “signature change”10 to Euclidean (+++), in the smeared re-

gion, i.e., there is “no-time” and there are no light cones for the radial motions when

θcφ < 0. In this sense, the outer (horizon) boundary becomes hard to penetrate

for particles, compared to the conventional event horizon. Nevertheless, light wave
11 may tunnel the smeared horizon region when its wavelength is greater than the

thickness of the region. (Similar thing happens when θcφ > 0. In this case, we have

(pseudo) Euclidean geometry with the signature (−−+), i.e., there are “two-times”

in the smeared region, and time and radial coordinates change the role.)

However, particles or waves inside the inner boundary can not escape from the black

hole since the light cone structures in that region are the same as in the interior region

of the event horizon of the commutative case. So, the inner boundary of the smeared

region is the trapped surface. The usual Hawking radiation would be generated near

the inner boundary since one of the pair-created particles can be trapped. On the

other hand, the pair-created particles near the outer boundary always recombine, due

to the absence of the trapping. Thus, our result seems to favor the tunneling picture

of the Hawking radiation by Parikh and Wilczek [18]. Further studies are needed in

this direction.

4. The Hawking temperature defined by the periodicity in the Euclidean time is not

applicable: To see this, let us consider the metric (4.3) near the Killing horizon r̃+.

Following the usual approach, we put the Euclidean time τ = −it and we get

dŝ2 ≈ κ̃2η2dτ2 +

[(

1 +
3θcφr2

−

2lr2
+κ̃

)

−
θcφr2

−

lr+κ̃2η2

]−1

dη2 + (r̃+ + κ̃η2/2)2(dφ̃)2, (4.11)

where η =
√

2(r − r̃+). From the regularity of the dτ2-part, one obtains the

periodicity β = 2π/κ̃ which would give the conventional Hawking temperature

TH = κ̃/2π [19]. For the non-rotating case (r− = 0), the system is quite normal and

the Killing and apparent horizons coincide, except the shift of the horizon in (4.1). In

this case, the Hawking temperature can be defined as usual with a constant shift:12

T̂H = (r̂+ + lθcφ/2)/(2πl2).

However, the (near horizon) geometry spoils the regularity in general since, as η → 0,

the radial coordinate η becomes time-like and the Euclidean procedure itself becomes

9This can be also observed in (4.5) and (4.8).
10This seems to reflect the quantum gravity nature of the noncommutative geometry, as is in the beginning

of the Universe [17].
11Particles may tunnel quantum mechanically, by their wave nature also.
12If one considers the Bekenstein-Hawking entropy [20], ŜBH = 2πr̂+ with respect to the horizon r̂+,

one would have the first law of thermodynamics with the black hole mass M̂ = (r̂2
+ + lθcφr̂+)/2l2, up to

some additive constant terms. But, it is not clear whether the Bekenstein’s area law is satisfied even in the

noncommutative geometry, which can be regarded as the higher derivative gravities [16].

– 7 –
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invalid. Thus, the conventional way of defining the temperature is not valid anymore

and this might be a general phenomena for the noncommutative geometry with the

smeared horizons. Somehow we suspect that TH = κ̃/2π, which converges to the

usual Hawking temperature TH = κ+/2π for the commutative case, can represent

the characteristic of the thermodynamical temperature of the smeared systems. The

details of this definition are beyond the scope of this paper.

5. The origin r = 0 is also smeared by a “new” horizon for θcφ > 0: There is a third

solution of N̂2 = 0 at

r̂−− = lθcφ (4.12)

when θcφ > 0. This provides a new “apparent horizon”,13 inside the inner horizon,

encircling the origin. The interior region of r̂−− has two-times as in the region between

r̃+ and r̂+.

In the pure AdS3 solutions or the negative mass black holes, generally, which can

be obtained by considering r2
± → −r2

± in the black hole solution (3.4), there is

no event horizon and there appears a naked conical singularity at the origin. The

conical singularity may be smeared by this new horizon as the results of the spatial

noncommutativity

It is also noted that the appearance of the new horizon near the origin depends on

the sign of θcφ, which is analogous to the sign dependence on the existence of soliton

solutions, “fluxons” in the field theories [3].
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